7 research outputs found

    Nuclear Safety Study of High Energy Heavy-ion Medical Accelerator Facility

    Get PDF
    During beam operation in heavy-ion medical accelerator facilities, radiological problems may arise during normal operation and by accidental loss in the beam system. This study emphasizes the nuclear safety aspects in designing a heavy-ion medical accelerator facility, with preliminary design concepts to accommodate a new synchrotron medical accelerator with a maximum energy of 430 MeV/u carbon ions. The beam loss points and irradiation rooms, which are potential hazardous areas of radiation exposure, are described for radiation shielding and activation simulations. Shielding simulations were performed according to the NCRP 147 recommendations, including skyshine and groundshine in a conservative manner with the occupancy factor of 1.0 and workload of 100%. The carbon 12 ions of energy 430 MeV/u generate radioactive isotopes as they interact with surrounding air and accelerator system components during transmission. The activation phenomena in air, cooling water, underground soil and ground water, and typical accelerator component materials such as iron and copper were estimated in detail. Nuclear safety simulations were performed by using the combination of MCNPX2.7.0 and the CINDER’90 codes. Thus, this report will provide a useful guide for estimating radiological impacts and allow optimal design of heavy-ion medical accelerator facilities with high safety standards

    Development of easy-to-use interface for nuclear transmutation computing, VCINDER code

    No full text
    The CINDER code has about 60 years of development history, and is thus one of the world's best transmutation computing codes to date. Unfortunately, it is complex and cumbersome to use. Preparing auxiliary input files for activation computation from MCNPX output and executing them using Perl script (activation script) is the first difficulty, and separation of gamma source computing script (gamma script), which analyzes the spectra files produced by CINDER code and creates source definition format for MCNPX code, is the second difficulty. In addition, for highly nonlinear problems, multiple human interventions may increase the possibility of errors. Postprocessing such as making plots with large text outputs is also time consuming. One way to improve these limitations is to make a graphical user interface wrapper that includes all codes, such as MCNPX and CINDER, and all scripts with a visual C#.NET tool. The graphical user interface merges all the codes and provides easy postprocessing of graphics data and Microsoft office tools, such as Excel sheets, which make the CINDER code easy to use. This study describes the VCINDER code (with visual C#.NET) and gives a typical application example

    Flushing Water Contamination in Different Concrete Models for PSA Level 3 Severe Accident Scenario

    No full text

    Important Model Parameters for Analyzing Activation Effects in Accident Scenarios for Heavy-ion Medical Accelerator Facility

    No full text
    corecore